How to choose a dental curing light?

Did you ever find that some fillings are lost prematurely? Or the retention of a high-quality ceramic restoration fails?And have you asked yourself why it happened? Obviously,the most likely reason is due to your curing device.You have chosen the wrong curing light at the very start.

All dental practitioners face significant challenges when light-curing hard-to-reach restorations. We know that the bond strength between the resin and the tooth structure—as well as the resin’s physical properties, polishability, color stability, and the amount of leachates—are all adversely affected when not enough energy is applied to the resin. We also know that when the resin composite is not adequately cured, it cannot resist the forces of mastication and, as a result, there will be greater wear, more postoperative leaching of chemicals that could cause increased sensitivity, and, very likely, more recurrent caries at the margins.

Choosing the Right Curing Light

In recent years, there have been significant changes and improvements in dental curing lights. Not all lights are the same, so it is important to choose the right curing light for the task at hand. Today, the two most popular types of dental curing lights use either quartz-tungsten-halogen (QTH) bulbs that deliver a broad spectrum of light between 400 nm and 500 nm, or light-emitting diodes (LED).

There are two types of LED curing lights: those that contain blue-only LEDs and provide blue light within a narrow spectral range of 440 nm to 490 nm, and poly-LED curing lights that deliver a broader spectrum of light in the range of 390 nm to 490 nm. Most manufacturers have stopped making QTH curing lights, partly because LED lights are more efficient than QTH light sources, but also because the incandescent bulbs for QTH devices will soon become scarce as a result of government legislation that will start to phase out incandescent bulbs in 2014.

Resin composite’s instructions for use usually state that the curing light’s minimum irradiance output should be at least 300 mW/cm2 to 400 mW/cm2. Currently, most QTH curing lights deliver at least 600 mW/cm2, and some lights that use specialized turbo tips can deliver more than 1,300 mW/cm2. The latest generation of LED curing lights can deliver an irradiance output greater than 2,000 mW/cm2, and some poly-LED curing light devices include supplemental LEDs that emit light at additional wavelengths. When using one of these high-powered curing lights the operator must be careful not to use the light for longer than necessary because too much energy could be delivered, which could cause thermal damage to the pulp or other oral tissues that are exposed to the light.

Monitoring the Curing Light

The dental radiometers that are currently used in dental practices measure the energy output from curing lights at the tip of the light guide. Using a radiometer and keeping a weekly log of these values will provide a valuable baseline for detecting any changes in the light’s output. However, it is important to understand that even a small distance between the tip and the resin will have an effect on how much light reaches the resin; the greater the distance, the lesser the amount of light energy that will reach the resin.22-25 You can see this effect readily if you move the tip of the curing light around over the dental radiometer sensor.

Sufficient curing is the prime concern of polymerization. A restoration made of light-curing materials will only be a long-term success if it is sufficiently cured.


Denshine is a professional dental website for dentists,ertainly,including the dental curing light.There are various types of curing light here,and other deviced like dental handpiece,uitrasonic scalers,loupes,looking forward to your visiting.

Leave a Reply